
Aberrant Behavior Detection in Time Series for

Monitoring Business-Critical Metrics (DRAFT)

Evan Miller
IMVU, Inc.

emiller@imvu.com

Oct. 28, 2007

1 Abstract

Detecting failures swiftly is a key process for maintaining a high uptime
for on-line applications. This paper describes a program that analyzes real-
time business metrics and reports the appearance of unusual behavior, thus
warning of potential application failure. We build upon Brutlag [1], which
was designed for monitoring high-volume network traffic, and extend the
mathematical model to work with comparatively low-volume metrics, such
as number of incoming orders. We show some examples of the program’s
analysis of real data, and suggest additional improvements to the model and
its implementation.

2 Introduction

Application failures that go unnoticed cause unnecessary revenue loss and
customer frustration. While system and network level monitoring may catch
a large number of problems, they do not address higher-level failures, such
as the introduction of an application bug or an external service interface
that changes without warning. One method for detecting these application
failures is to run automated functional tests at a regular interval. These
tests might emulate an end-user’s client session, or interact with an external
server; their common purpose is to verify that certain expected results occur.

Tests by themselves, however, are often insufficient. They might miss
bugs that appear only a fraction of the time, or that are only manifest to a
certain subset of all users. It is therefore useful to complement tests with a

1

real-time analysis of business metrics in order to detect small but significant
service degradations.

An analysis consists of two parts. First, forecasting consists of deter-
mining some set of expected values for a metric as a function of time (e.g.,
“between noon and 1 PM on Friday, we expect 20 orders”); these expected
values might incorporate information about our uncertainty in them (“plus
or minus 5”). Second, anomaly analysis consists of comparing the expecta-
tions to the incoming observations; an anomaly analysis will tell us whether
a set of observations is anomalous or non-anomalous.

The simplest approach to forecasting is for a human to decide upon “rea-
sonable” upper and lower thresholds for given metrics at given times of day;
the anomaly analysis then consists of comparing incoming observations to
this table of pre-defined thresholds, and alerting if any observations are out
of bounds. However, manually creating these tables of expectations is time-
consuming, and keeping them up-to-date as the business grows (or contracts)
is burdensome compared to expectations that are generated dynamically.

Our work takes advantage of Holt-Winters forecasting as incorporated
into RRDtool (an open-source time-series database) by Brutlag [1]; the al-
gorithm uses exponential smoothing techniques to dynamically formulate
expected values based on historical values, taking into account daily fluc-
tuations as well as day-to-day trends. Readers interested in the details of
Holt-Winters forecasting are referred to Brutlag [1]. The characteristic rele-
vant to this paper is that Holt-Winters is modeled around seasonal variation;
that is, predictions are formulated with respect to a daily, weekly, or yearly
cycle.

Although Holt-Winters forecasting is well-studied and robust, we find
Brutlag’s anomaly analysis to be insufficient when the expected value is com-
parable to the expected deviation. That is, if the “confidence band” he de-
scribes extends to zero, then Brutlag’s method will record as non-anomalous
an infinite sequence of “0” observations. This characteristic makes the Brut-
lag method unusable for many low-volume applications where an observation
of “0” for a small time interval should be acceptable, but an observation of
“0” for many consecutive intervals should indicate an anomaly. Our work
circumvents this deficiency, in part by defining a narrower problem.

3 Description of the Anomaly Analysis Model

3.1 Assumptions

We start with two assumptions:

2

1. Metrics count events that arrive independently

2. Under non-anomalous circumstances, the differences between predic-
tions and observations at a given seasonal offset over several seasons
can be described by a normal distribution about 0

The first assumption narrows the scope of our model, but it accurately
describes many of our business-critical metrics. For example, each order that
comes in is unrelated to other orders coming in; they represent independent
buying decisions. We therefore restrict ourselves to analyzing numbers of
actions, rather than sizes of actions (such as dollar amounts).

The second assumption is a common statistical assumption, used here
for convenience. Note that we are assuming a normal distribution for the
predictions associated with each seasonal offset. Their variances are un-
related. For example, under a daily cycle, the 5 PM predictions could be
wildly inaccurate and the 6 PM predictions could be spot-on; we assume
the former has a normal distribution with a large variance, and the latter a
normal distribution with a small variance, both with averages of zero.

3.2 Interpretation of prediction and prediction deviation

Brutlag’s implementation of Holt-Winters produces two important values
for each point on the time horizon: a prediction, produced by an additive
Holt-Winters model, and a predicted deviation, which is the exponentially
smoothed difference between past predictions and past observations.

Given our assumptions, we interpret the prediction and predicted devi-
ation to have special meaning. The prediction divided by the time interval
to which it applies is interpreted, perhaps not surprisingly, as an average
rate at which events are expected to arrive. The predicted deviation ap-
proximates a standard deviation of the accuracy of the prediction, weighted
toward more recent observations. This follows from the similarity between
the definition of the standard deviation and the prediction deviation. Define
xk,i as the kth observation of season i and yk,i as the kth prediction of season
i. The standard deviation of xk − yk for some offset k examined over N
seasons is:

σk,N =

√√√√√ 1
N

N∑
i=1

(xk,i − yk,i)2 −
1
N

(
N∑
i=1

(xk,i − yk,i)
)2

(1)

Given assumption 2, that reduces to:

3

σk,N =

√√√√ 1
N

N∑
i=1

(xk,i − yk,i)2 =
√
〈(xk − yk)2〉 (2)

And the prediction deviation dk, measured at seasonal offset k, is de-
scribed by a recursive formulation (Brutlag [1]):

dk,1 = |xk,1 − yk,1|
dk,i+1 = (1− γ)(|xk,i+1 − yk,i+1|) + γdk,i

for some smoothing parameter γ ∈ (0, 1). Over N seasons, dk,N is then:

dk,N = γN−1|xk,1 − yk,1|+
N∑
i=2

γN−i(1− γ)|xk,i − yk,i| (3)

which is actually a weighted average over |x− y|, because:

γN−1 +
N∑
i=2

γN−i(1− γ) = γN−1 + (1− γ)
N−2∑
i=0

γi

= γN−1 +
N−2∑
i=0

γi −
N−1∑
i=1

γi = γN−1 + γ0 − γN−1 = 1

And so dk,N is a weighted average of |xk − yk|, while σ is equal to the
RMS of |xk − yk|. Before moving on, we thus note that:

dk,N ≈ σk,N (4)

3.3 Analysis of Brutlag’s method

We can now, with greater yet imperfect precision, characterize circumstances
under which Brutlag’s method will completely fail, using the assumptions
of 3.1.

Brutlag’s method calls for choosing a “scaling factor” between 2 and 3;
this scaling factor is multiplied by the prediction deviation, and the result
is both added to and subtracted from the prediction in order to produce a
“confidence band.” If some specified number of measurements fall outside
of this confidence band, the readings are said to be anomalous. We will
describe when an infinite number of “0” readings will fail to be analyzed as
anomalous.

4

Per assumption 1 of section 3.1, we are analyzing a Poisson process. Our
observations therefore will follow a Poisson distribution, with variance equal
to the mean, also known as the Poisson parameter. Since we interpret pre-
dictions as the expected average, a prediction y gives us a Poisson parameter
λ = y.

Because the variance σ2 of a Poisson distribution is equal to λ, we expect
the prediction deviation d ≈ σ to be approximately equal to

√
y. Brutlag’s

confidence band will therefore encompass 0 and render the method nearly
useless when 2

√
y ≥ y ⇒ y ≤ 4, i.e., when the number of events predicted

in an interval is about 4 or fewer.

3.4 The Model

The heart of the model is to treat incoming events as a Poisson process
with an uncertain Poisson parameter, which we estimate with a normal
distribution around yk,i (the prediction) with variance d2

k,i (the prediction
deviation squared). We model the accuracy of the Poisson parameter with
a normal distribution by assumption 2 of section 3.1. A more rigorous
approach would use σ2 instead of d2 to represent the variance; however,
storing σ2 in RRDtool would require modifications in the RRDtool core, so
we approximate σ2 with d2 per Equation (4).

More formally, given a prediction y with prediction deviation d, we cal-
culate the probability p of observing some value x or lower than x as:

py,d2(x) =
∫ ∞
−∞

f(x;λ)ϕy,d2(λ) dλ (5)

where f(x;λ) is a cumulative Poisson probability with parameter λ:

f(x;λ) =
x∑
i=0

e−λλi

i!
(6)

and ϕy,d2(λ) is the probability density of a normal distribution with
average y and variance d2 at value λ:

ϕy,d2(λ) =
1

d
√

2π
exp

(
−(y − λ)2

2d2

)
(7)

But since the Poisson parameter must be positive, we cut off the distri-
bution described by Equation (5) at λ = 0 and normalize thus:

py,d2(x) =
∫∞
0 f(x;λ)ϕy,d2(λ) dλ∫∞

0 ϕy,d2(λ) dλ
(8)

5

The intuition for this model is as follows: because under non-anomalous
conditions, the prediction often “misses” by some amount, we instead treat
the prediction as a range of possible predictions described by the prediction
deviation, and calculate the probability of seeing some observation for each
prediction in the range. In other words, if an observation seems “off”, it
could be that there is genuinely a problem; or it could be that the prediction
is wrong. Our model takes both possibilities into account.

The original flaw we described in the Brutlag model is that a string of
low-but-acceptable observations is treated no differently than a single low-
but-acceptable observation. We now show how our model does not suffer
from the same defect.

As observations come in, we perform the above analysis for T succes-
sively larger time intervals by consolidating small intervals. We will define
a health value hk,i(T) as the lowest value of p(x) that can be computed by
consolidating up to T of the most recent observations. To consolidate in-
tervals, we note that adding two normal distributions with averages µ1 and
µ2 and variances σ2

1 and σ2
2 produces a normal distribution with average

µ = µ1 + µ2 and variance σ2 = σ2
1 + σ2

2. Since our Poisson parameter is
modeled as a normal distribution with average y and variance d2, we con-
solidate a set of N predictions y1 . . . yN and corresponding set of prediction
variations d1 . . . dN according to:

y =
N∑
i=1

yi d2 =
N∑
i=1

d2
i (9)

We use these properties to formalize the health hk,i(T):

hk,i(T) = min
t∈(1,...,T)

p∑t

j=1
(yk−j,i),

∑t

j=1
(d2

k−j,i
)
(
T∑
j=1

xk−j,i)

 (10)

In this way we can alert on a series of observations that, taken indi-
vidually, would not be cause for alarm. As an example, consider two time
intervals with d = 0, x = 0, y = λ. We can easily show that examining both
intervals produces a health value hk(2) that is lower than examining just
one interval, hk(1):

hk(1) = py,d2(x) = pλ,0(0) = f(0;λ) = e−λ

hk(2) = min
(
py,d2(x), p2y,(2d)2(2x)

)
= min (pλ,0(0), p2λ,0(0))

= min (f(0;λ), f(0; 2λ)) = min(e−λ, e−2λ) = e−2λ < hk(1)

6

If we set some alarm threshold A such that hk(1) > A > hk(2), our
model would characterize the one-interval case as non-anomalous and the
two-interval case as anomalous.

4 Algorithmic analysis

Equation (6) can be calculated in time linear in x, where x is the size
of the observation in a time interval; Equation (7) is constant time, and
the integrals in Equation (8) can be computed with constant-time Riemann
sums. The running time of calculating one value of p(x) is therefore O(x). If
we run the calculations over T successively larger time intervals to find h(T)
by Equation (10), and if x is the average number of events in one interval,
the average running time of computing one value of p(x) is O(Tx). Since
calculating h(T) requires computing T values of p(x), the overall running
time is O(T · Tx) = O(T 2x).

We might improve the running time by storing a table of values for
Equation (6), rounding λ as appropriate. This optimization will reduce
the cost of computing p(x) to be O(1), thus reduce the running time of
computing h(T) to O(T). However, such a table requires O(T 2x2) memory.

5 Implementation

Thanks to the work of Brutlag [1], the Holt-Winters algorithm has previ-
ously been incorporated into the open-source application RRDtool. Brutlag
implemented both the Holt-Winters forecasting as well as his own anomaly
analysis into RRDtool. We have made slight modifications to the forecast-
ing implementation within RRDtool, and have written stand-alone scripts
to perform the anomaly analysis.

5.1 Modification to RRDtool

The Brutlag implementation calls for a periodic “smoothing” of predicted
values. This smoothing is unrelated to seasonal exponential smoothing, but
is instead a running average; some time after the first season, each predic-
tion is replaced by an average of several surrounding predictions. Since “the
seasonal effect is a smooth function over the period, not a discontinuous
series of points,”[1] smoothing is designed to prevent an anomalous first ob-
servation from ruining predictions in that seasonal offset (note that the first
observation is “special,” as one can easily see from Equation (3); for small γ

7

it will influence predictions for much longer than subsequent observations).
However, the size of this running average window was hard-coded to 5%.
Since we use weekly seasons, this meant that each prediction averaged the
surrounding 8 hours of observations, producing rather poor predictions. We
have made this window a configurable parameter, and in practice we disable
the running-average smoother altogether.

5.2 Stand-alone script

Our script analyzes several counters in a Holt-Winters-enabled Round-Robin
Archive once per minute according to Equation (8), successively looking
further and further into the past with the aid of Equations (9) and (9).
We approximate the integrals using Riemann sums with a fixed number of
points, setting the integral boundaries to be a few standard deviations on
each side of y. The script retrieves prediction values from the HWPRE-
DICT archive, and prediction deviations from the DEVPREDICT archive.
Calculated health values are recorded in another Round-Robin Archive for
retrieval by Nagios, and open-source alerting program. Nagios is configured
to trigger an alarm if the health value ever drops below some pre-defined
level. In practice, we find that threshold probabilities on the order of 10−5

minimize the number of false positives without creating too many false neg-
atives.

6 Sample Data

Below we show an example of the model detecting a problem that the Brutlag
method would have missed.

Figure 1: A set of readings on 17-19 October 2007, with confidence bands using the
method of Brutlag [1].

8

Figure 2: The health value calculated by our model, with pre-defined “warning”
and “critical” levels; when the health dips below “critical”, an alert is triggered.

Figure 1 shows three days of observations for the number of IMVU users
who invited their Hotmail contacts to open an account at IMVU. The line
in maroon is a per-second invitation rate, with units m = .001. The blue
lines represent the “confidence bands” described in Brutlag [1]. Because the
maroon line does not cross the blue lines, an alert is not triggered in the
time period shown.

Figure 2 shows how our model analyzed the data in Figure 1. At ap-
proximately 5 AM Friday, it first detects a problem, which persists most of
the day. In fact, an external service provider had changed an interface early
Friday morning, affecting some but not all of our users. The problem was
not corrected until Friday afternoon.

7 Future Work

Probably the most needed improvement to our model is to resolve the prob-
lem with initial conditions. Because the first term in Equation (3) is not
multiplied by γ like the rest of the terms, early predictions may vary widely
based on the first set of observations (i.e., |x1 − y1|). A better model would
take the variability of the first observations into account, rather than treat
these observations as equivalent to a large set of exponentially-smoothed
data. A statistical model would be preferable to the ad-hoc smoother de-
scribed in 5.1.

Although we have restricted our model to Poisson processes, a model
similar to ours might be used to resolve the many-zeroes problem of Brut-
lag’s method when analyzing non-Poisson processes. A simple extension to
Brutlag’s method would be to consolidate time intervals using Equation (9),
then apply the same confidence-band techniques described in his paper; the

9

practicality of this approach should be explored further.
Our scripts do not use the dynamic programming technique described in

section 4; an implementation would be necessary to analyze a large number
of metrics, or metrics with large values. This optimization will require ana-
lyzing the tradeoff between space requirements and the degraded quality of
calculation due to rounding.

As mentioned in 3.2, a more accurate model would use the actual stan-
dard deviation for each prediction’s accuracy, rather than rely on the ap-
proximation in Equation (4). In practice, this change will require additional
modifications to RRDtool, and has not seemed necessary.

8 Conclusion

In this paper, we demonstrated mathematically and with sample data why
a popular anomaly-detection algorithm is unusable for independent events
that occur roughly 4 or fewer times in an observation interval. We developed
a statistical model for Poisson processes that exhibit seasonal fluctuations,
and introduced an algorithm to trigger alerts based on the model. In its
implementation at IMVU, the algorithm has quickly alerted engineers to
application failures that would have gone unnoticed for much longer.

References

[1] Jake D. Brutlag. Aberrant behavior detection in time series for network
monitoring. In LISA, pages 139–146, 2000.

10

